
Debugger and Visualizer for a Shared Sense
of Time on Batteryless Sensor Networks

Final Report

Team 15 (May 2021)

Client/Advisor
Dr. Henry Duwe

Team Members
Adam Ford - Report Manager

Allan Juarez - Scribe
Maksym Nakonechnyy - Design Lead

Anthony Rosenhamer - Facilitator
Quentin Urbanowicz - Test Engineer

Riley Thoma - Project Manager

Email: sdmay21-15@iastate.edu
Website: http://sdmay21-15.sd.ece.iastate.edu

Revised: April 25, 2021 (Final)

http://sdmay21-15.sd.ece.iastate.edu

Executive Summary
The proposed solution is to create a set of applications: a desktop application that
will simulate a batteryless sensor network and a web-application that will allow the
user to visualize and debug the shared sense of time across this network. The
system will also provide functionality to simulate a sensor network, and visualize
and debug these simulated networks.

Development Standards & Practices Used
● Layered architecture
● RFC 7231: HTTP [1]
● RFC 793: TCP [2]
● IEEE Standard 24765: Systems and software engineering - Vocabulary [3]
● GitLab
● Agile methodology

Summary of Requirements
● Track the local times of sensor nodes
● Generate event trace files of sensor network simulations
● Process and store trace files on the backend for reusability
● Simulate the data in the same format as real data
● “Replay” trace file data
● Display up to 15 sensor nodes on screen

Applicable Courses from Iowa State University Curriculum
● COM S 227: Object-Oriented Programming
● COM S 228: Introduction to Data Structures
● COM S 309: Software Development Practices
● COM S 327: Advanced Programming Techniques
● COM S 363: Introduction to Database Management Systems
● CPR E 288: Embedded Systems I
● CPR E 458: Real-Time Systems
● EE 201: Electric Circuits
● ENGL 314: Technical Communication
● SE 319: Construction of User Interfaces
● SE 329: Software Project Management
● SE 339: Software Architecture

New Skills and Knowledge Acquired
● SimPy library
● UNIX-domain sockets
● ExpressJS
● MongoDB database
● React JS
● Jest
● Selenium

Table of Contents
1 Introduction 8

1.1 Acknowledgement 8
1.2 Problem and Project Statement 8

1.2.1 Problem Statement 8
1.2.2 Proposed Solution 8

1.3 Operational Environment 9
1.4 Requirements 10
1.5 Intended Users and Uses 10
1.6 Assumptions and Constraints 11

2 Design 12
2.1 Related Work and Literature 12
2.2 Design Thinking 12
2.3 Design 12

2.3.1 Simulator Design 13
2.3.2 Backend Design 17
2.3.3 Frontend Design 18

2.4 Technology Considerations 20
2.4.1 Simulator 20
2.4.2 Backend 20
2.4.3 Frontend 21

2.5 Design Revisions 21
2.5.1 Simulator Revisions 21
2.5.2 Backend Revisions 22
2.5.3 Frontend Revisions 22

3 Implementation 23
3.1 Simulator 23

3.1.1 Simulation 23
3.1.2 Nodes 23
3.1.3 Energy Models 23
3.1.4 Configuration 24
3.1.5 Events 24
3.1.6 Logger 24

3.2 Backend 25
3.3 Frontend 26

3.3.1 Resources 26

4 Testing 28
4.1 Unit Testing 28

4.1.1 Simulator Testing 28

4.1.2 Backend Testing 28
4.1.3 Frontend Testing 29

4.2 Interface Testing 29
4.3 Integration Testing 30
4.4 Acceptance Testing 31
4.5 Results 31

4.5.1 Simulator Tests 31
4.5.2 Backend Tests 32
4.5.3 Frontend Tests 32
4.5.4 Integration Tests 33

5 Closing Material 34
5.1 Conclusion 34
5.2 References 34
5.3 Appendix 36

5.3.1 Appendix I: Operation Manual 36
5.3.2 Appendix II: Alternative Designs 42
5.3.3 Appendix III: Other Considerations 43

List of figures
Figure 1.1 High-level system diagram

Figure 2.1 System block diagram

Figure 2.2 Simulator class diagram

Figure 2.3 Simulator events class diagram

Figure 2.4 Backend block diagram

Figure 2.5 Frontend block diagram

Figure 3.1 Main visualization page

Figure 4.1 Visualizer GUI test suite

Figure 5.1 Simulation management page

Figure 5.2 Updated simulation table

Figure 5.3 Main visualization page

Figure 5.4 Simulation table before deletion

Figure 5.5 Simulation table after deletion

Figure 5.6 Node details panel

Figure 5.7 Error propagation tree

Figure 5.8 Error over time graph

Figure 5.9 Node lifecycle

List of tables
Table 2.1 Trace File Format

Table 2.2 Trace File Events Format

Table 3.1 API Endpoints

Table 4.1 3-Node Simulation Performance

Table 4.2 8-Node Simulation Performance

Table 4.3 15-Node Simulation Performance

List of definitions
Backend Application for storing and processing time data to be exported or sent to the

frontend; receives data from the simulator

Frontend Web application for viewing the sensor network’s time data

GUI Graphical User Interface

Node Sensor node in a network

Sniffer A component that reads messages being sent or broadcasted between sensor nodes

Simulator Application that produces time data and simulates the time data that would be
coming from a sensor network, sends data to the backend and a trace file

1 Introduction
1.1 Acknowledgement
We would like to acknowledge our faculty advisor and client, Dr. Henry Duwe, for his guidance and
expertise throughout the course of this project. We would also like to thank Vishal Deep for his
research on distributed batteryless timekeeping systems, which forms the need for our project and
without which our work would not be possible. In addition, we would like to extend our gratitude to
Iowa State University for providing access to software and hardware resources for testing and
development, and for providing our team this opportunity to contribute to the ongoing development
of batteryless intermittent computing technologies.

1.2 Problem and Project Statement

1.2.1 Problem Statement

In distributed embedded computing systems, reliable timekeeping is essential. Typical methods of
keeping track of time require continuous power to function, usually from a battery. However, the use
of batteries in certain applications, like distributed sensing, may pose significant challenges,
particularly in circumstances where replacing batteries is infeasible or impossible.

For such use cases, batteryless devices, which draw the energy required for their operation solely
from ambient sources, present numerous advantages; the lack of a consistent power source,
however, necessitates a new method of keeping track of time and ensuring that sense of time is
shared between all nodes in a system.

A graduate research group at Iowa State University, led by Vishal Deep, has demonstrated designs
for real-time embedded clocks which are capable of keeping time without the need for a continuous
source of power. However, due to variations in manufacturing, susceptibility to noise, and the added
complexity of keeping a sense of time synchronized across a distributed system, visualizing and
debugging these clock systems is exceedingly difficult.

To optimize designs and detect unknown bugs, a simulation tool capable of modeling the
interactions within a distributed network of clocks and determining each node’s resultant sense of
time is required. A debugging system capable of probing and visualizing the state of the network and
examining the dependencies between each node’s sense of time is also needed.

1.2.2 Proposed Solution

Our team’s solution was to develop a pair of software tools for debugging the shared sense of time
across a network of distributed clocks: a simulator, which models and records time estimates across
a network over time, and a visualization dashboard, which utilizes data from simulations, or a
yet-to-be-developed hardware sniffer, to visualize these changes and analyze the interconnections
between individual nodes. Our simulator utilizes optimizations where possible to reduce
computation time and enable scalability across larger numbers of nodes. The dashboard utilizes a

locally hosted web application to ensure compatibility across all operating systems and enable use
by multiple users simultaneously. With these tools, we hope to create a set of utilities that are
powerful enough to achieve the levels of accuracy and precision required for academic research, yet
flexible enough to adapt to design changes and enable collaboration with minimal effort. An
overview of the system is shown in Figure 1.1 below.

Figure 1.1. High-level system diagram

1.3 Operational Environment
Due to the necessity of generating, storing, and analyzing large sets of data, our team has developed
our software tools with high-performance computing hardware in mind. The simulator will run
natively in a Linux environment and is operated primarily through a command-line interface. The
visualization dashboard runs as a locally hosted web application and thus requires a web browser
with support for modern web standards such as HTML5, CSS 4, and JavaScript. Since the dashboard
web app is locally hosted and since interaction with sensitive information is not required, there are
no specific concerns for data security or privacy compliance.

1.4 Requirements
Functional requirements:

● The system shall process and store trace files on the backend for reusability.
● The system shall monitor which nodes are currently communicating.
● The system shall record any successful/unsuccessful communications between nodes.
● The system shall track the local times of sensor nodes.
● The simulator shall generate a trace file describing events in the sensor network, such as

interactions between nodes.
● The simulator shall produce on-time/off-time data from a user-selected energy model.
● The simulator shall generate the data in the same format as real data.
● The visualizer shall display up to 15 sensor nodes on the screen.
● The visualizer shall display previously saved simulation data.
● The visualizer shall visualize the statistics of system communication.
● The visualizer shall display which nodes can communicate with one another.
● The visualizer shall display whether communications between nodes were successful.
● The visualizer shall display the propagation of time error throughout the network over time.
● The visualizer shall keep track of simulations that can be displayed.

Non-functional requirements:
● The system shall be modular to allow for maintainability.
● The simulator shall run natively in a Linux environment.
● The simulator shall maintain sub-second accuracy of timing.
● The visualizer shall be implemented as a web application.
● The visualizer shall be accessible from any OS.

Economic requirements:
● The system shall be built using open-source software to minimize costs.

Environmental requirements:
● The system shall run in a controlled environment, so there aren’t any environmental

requirements.

1.5 Intended Users and Uses
The system shall support research group members. Their team requires this system for their
research into timekeeping for batteryless sensor networks. The system shall provide the following
functionality to users:

● View the state of sensors in real time
● Simulate a network.
● Save all events from a network simulation to a trace file.
● “Replay” past data for the network as a whole.
● “Replay” past data for an individual node.
● See the statistics of system communication.
● Interact with the dashboard to view specific statistics.
● See the propagation of error from one node to another via Error Trees.
● Import multiple trace files and move between them.

1.6 Assumptions and Constraints
Assumptions

● The minimum number of nodes to be simulated is three.
● The project will only be used for academic purposes and does not require security

constraints.
● The visualizer will be used on a screen that is of size at least 24’’.

Constraints
● With the pandemic going on, we will have to adapt to work in a virtual environment.
● There is no actual sniffer, so it will be hard to do an integration test of the visualizer with the

sniffer.
● Per our clients’ request, we will be using open source libraries.

2 Design
2.1 Related Work and Literature
Vishal Deep and Dr. Duwe’s research group has shared a paper they had published on the topic of
maintaining a shared sense of time in a network of batterless nodes [4]. It is cited in section 5.2.

This paper is primarily composed of information regarding how nodes share time and other
background information important to our project. This gives a basis for our team to work off of but
does not describe the software system in any way.

The research group has previously built a two-node simulator, which we were able to reference
while working on our design project. However, our simulator was developed with a larger focus on
node communication rather than modelling individual nodes, so we did not rely very heavily on the
existing simulator.

2.2 Design Thinking
During the “define” stage of our design process, we first discussed Dr. Duwe’s research and what
needed to be done to facilitate the research. The core issue of our client was the inability to trace
the errors that occur from inaccurate time predictions. Dr. Duwe needed software to help him trace
all communications between nodes and visualize the propagation of errors from one node to
another. These communications would be recorded by a sniffer device, but the device does not exist
yet, so a need for a simulator came up. We then created a high-level diagram that depicted our
understanding of the visualizer and simulator. Now we focus on each component separately to refine
the knowledge gained from the discussions with Dr. Duwe.

Much of the ideate phase was completed for us by Dr. Duwe and Vishal Deep as they had already
been working on the project and were looking for a specific debugging application to suit their
needs. We worked through the ideate phase of our design as a team and through our discussions
with Dr. Duwe. One of the notable ideation moments happened when we discussed our high-level
design diagram. We talked through possibilities for how the different pieces of the project would
connect and what would be included in the diagram. When we first showed the diagram to Dr.
Duwe, he was able to provide more ideas for us to use, especially with the backend design.

2.3 Design
The system will consist of two main components: a simulator and a visualizer. The visualizer, a web
application, will consist of two applications: backend and frontend.

Figure 2.1. System block diagram

2.3.1 Simulator Design

The simulator will run as a Python application via the command line; it will not have its own
graphical user interface. The simulator will consist of the following classes with the attributes listed
below:

● Simulation
○ Sets up system with a multiple nodes
○ Maintain the true time within the simulation
○ Runs the main loop for the simulation
○ Outputs a trace file of events that occurred in the simulation

● Node (multiple)
○ Maintains its own clock
○ Uses an energy model to track when it turns on or off
○ Tracks its own state (off, boot, or on)

● Energy Model
○ Determines how long a node will remain in each state (off, boot, on)
○ Models the time for a sensor node to harvest and consume energy
○ Has variation to emulate real sensor networks

● Events
○ Store the details of events that occur in the sensor network (transitions between

states, communication with other nodes)
● Logger

○ Outputs the details stored in an event
○ Configurable to log details in different ways

Each of these classes will exist in its own Python file where its attributes and behavior are defined.
The simulation class is the core component of the simulator. It performs the initial setup of a
simulation and executes the main loop, which tracks the true time within the system and calculates
variation through the use of event-driven simulation logic using the SimPy module. The details of
these classes are shown in Figure 2.2.

Figure 2.2. Simulator class diagram

The nodes will cycle through three main states: OFF, BOOT_UP, and ON. In the OFF state, the nodes’
system capacitor will harvest power at a variable rate affected by environmental factors. Once the
system capacitor reaches its ON threshold voltage, the node will enter the BOOT_UP state, setting
up the system over some interval. At the end of the BOOT_UP state, the node will measure the

voltage of the persistent clock capacitor and calculate its new sense of time based on this value.
Immediately afterwards, it will transition to the ON state, where it will send event messages to other
nodes, reflecting its shared sense of time estimates. During the ON state, the persistent clock
capacitor will harvest power. This continues until the system capacitor reaches the OFF threshold
voltage, at which point the node transitions back to the OFF state and begins charging again. More
details can be found in Appendix III: Other Considerations - Lifecycle of a Node.

While cycling through the states of a node, the simulator will generate several events to record what
is happening in the system. The events record transitions between states and communication
between nodes. The events are shown below in Figure 2.3.

Figure 2.3. Simulator events class diagram

These events are logged with the Logger class. There are multiple formats for logging events,
including a plain-text format, a list of events with fields, a message to the backend via sockets, and
logging to a trace file. Logging to a trace file will be the most common format for recording events
because the visualizer uses trace files to view the events of the network. Table describes the trace
file format.

Configuration
Details
Simulation
characteristics

Version (1 byte) Resolution (1 byte) Duration (8 bytes) Number of nodes
(1 byte)

Trace file version
number

Smallest time
division in the
simulation

Simulation
duration in terms
of time steps

Number of nodes
in the simulated
network

Node List
List of nodes
and their
characteristics

Node A ID (1 byte) Node A x-position
(1 byte)

Node A y-position
(1 byte)

Number of
neighbors (1 byte)

ID for labelling
the node

x-position to place
the node in the
visualizer

y-position to place
the node in the
visualizer

Number of
neighboring nodes

Neighbor 1 ID
(1 byte)

Neighbor 2 ID
(1 byte)

...

ID of neighbor
node

ID of neighbor
node

More neighbors

...

More node details

Event List
List of events
that occur
during the
simulation

...

See Table 2.2

Table 2.1. Trace File Format

The event list section of the trace file lists the different events that occurred during the sensor
network simulation. The event fields depend on the type of events as shown in Table 2.2.

Event Share Time Event
(35 bytes)

Share Time
Confirmation
Event
(19 bytes)

Share Time Failure
Event
(19 bytes)

Node State Event
(35 bytes)

Description Indicates
attempted
communication
between nodes

Confirms
successful
communication

Indicates failed
communication

Indicates a node
state transition (i.e.
off-to-boot,
boot-to-on,
on-to-off)

Fields Real time
(8 bytes)
Event type
(1 byte)
Sender node ID
(1 byte)
Destination node
ID
(1 byte)
Sender time
(8 bytes)
Destination time
(8 bytes)
Updated time
(8 bytes)

Real time
(8 bytes)
Event type
(1 byte)
Sender node ID
(1 byte)
Destination node
ID
(1 byte)
Updated time
(8 bytes)

Real time
(8 bytes)
Event type
(1 byte)
Sender node ID
(1 byte)
Destination node
ID
(1 byte)
Updated time
(8 bytes)

Real time
(8 bytes)
Event type
(1 byte)
Node ID
(1 byte)
Updated time
(8 bytes)
State (1 byte)

Table 2.2. Trace File Events Format

2.3.2 Backend Design

The backend runs server side and is accessed by our frontend. The backend receives a trace file
from the frontend. The frontend can also choose to send more than one trace file to the backend to
process, which gives them the ability to run multiple simulations at a time. The backend immediately
pumps out the configuration for that simulation for the frontend to display immediately while still
processing and storing the data events to the database. Once the simulation is ready to go and
processed, the user in the frontend can make an HTTP request to fetch all the important time events
where a communication event occurred. There, a user can click on any node, and the backend will
spit out important data and statistics using an HTTP request.

Figure 2.4. Backend block diagram

2.3.3 Frontend Design

The frontend is a web-based application, which allows it to be run on any device with a web
browser. It gets all the necessary information it needs to run the visualizer from the RESTful APIs
provided by the backend. The frontend sends HTTP requests to the backend requesting data to
update the state of the network being displayed and the various graphs. The application consists of
many components that handle their own state. The Presenter/Adapter component (see Figure 2.4
below) is responsible for maintaining the state of the visualization as well as processing the data to
be displayed. The Presenter/Adapter is one logical component because React automatically
rerenders what is displayed when the state of the component changes. The Request Sender
component is responsible for sending HTTP requests to the backend application and passes on the
data to the presenter through the EventBus (an implementation of the publisher-subscriber pattern).

Figure 2.5. Frontend block diagram

The Graphical User Interface consists of two main pages: the Simulation Management Page, and the
Main Visualization Page. On the Simulation Management Page, the user can see the list of all
processed simulations that can be visualized; visualize previously saved simulations; upload new
simulations; and delete simulations.

On the Main Visualization Page, there is a global clock displayed for the real time of the system. The
user can move through time to view the state of the network at a particular time. The network of
batteryless sensors is visualized as a graph with nodes representing the sensors, and edges
representing communications between sensors. The communications are displayed as directed
edges, and the color of the edge represents the status of communication (green for successful
communication and red for failed communication). The ability of two nodes to communicate is
displayed as a bidirectional gray edge between two nodes. The user can see the status of each node
(ON, OFF, and BOOT), nodes’ local times, nodes’ errors, and other information. The user can also
examine each node’s history of communication up to a point in time (displayed in a separate graph as
a rooted tree). Statistics are displayed to the user in an appealing way. The final graph displayed to
the user is a line graph depicting the mean and median error of all nodes in the network. When
selecting a specific node, this graph updates to show that node’s local error as well as the other two
lines.

2.4 Technology Considerations

2.4.1 Simulator

● Python programming language
○ Python standard library
○ socket library
○ SimPy

The simulator is built in Python since it is a simple and powerful programming language. A major
strength comes with the availability of Python libraries, including the standard library and the
socket module that enables communication between the simulator and the visualizer. One
alternative that we considered was using C++ rather than Python to implement the simulator, but we
decided on Python because the research team had more experience with Python. We also looked at
using the WebSocket protocol as an alternative to UNIX-domain sockets, but we went with
UNIX-domain sockets because they are better suited for Python through the socket library which
has more support than most WebSocket libraries for Python. We are also using the SimPy module
for running the discrete-event simulation required for this application [5]. SimPy has many
advantages, mainly being able to run extended events more quickly; this will enable us to simulate
the life of a sensor network efficiently.

2.4.2 Backend

● ExpressJS (NodeJS)
● MongoDB database

These languages allow us a simple yet robust methodology for proving REST APIs to our frontend.
Utilizing the Express framework allows us to bring up the backend quickly, and without too much
learning curve being written in NodeJS [6]. We considered Django (Python) and Phoenix (Elixir) as
other alternatives, but both were based on an MVC pattern which were irrelevant for our use cases.
MongoDB was chosen over other databases including flavors of SQL or CouchDB as it excels at high
volumes of read/writing which are prevalent in the live portion of the application [7]. MongoDB
specifically allows us to keep a record of all events in one collection event though they likely do not
all have the same fields. Although our knowledge is stronger in other databases, MongoDB’s benefits
outweighed our strengths [8].

2.4.3 Frontend

● HTML & CSS
● Javascript - ReactJS [9]
● Selenium [10]
● Jest [11]

For the frontend application, we decided to use HTML & CSS and JavaScript since these are the most
common and the most suitable technologies for developing web applications. Using these languages,
we are using fairly basic web development tools, but they can be quite powerful. On top of that, we
decided to use the ReactJS framework that provides numerous powerful tools and libraries for
improved user experience with applications. We also considered using AngularJS as the development
framework instead of ReactJS, but our team has no prior experience with AngularJS, and the learning
curve vs. added benefit does not seem worth it at this time. Another consideration was to use
WebGL for displaying the nodes, but this project does not require extensive use of graphics, so we
decided that it was not appropriate for our purposes. When it comes to testing, we decided to use
Selenium for GUI testing and Jest for unit testing.

2.5 Design Revisions

2.5.1 Simulator Revisions

Previously, the simulator was designed to include a specialized node that worked as the sniffer. The
sniffer would model a physical hardware device that monitors a network to record communication
between nodes. The simulator no longer relies on this node to handle communication between
nodes. because the SimPy library can be used to track global time and the system has full knowledge
of all nodes.

The initial design also planned to manually handle discrete-event simulation through the use of a
priority queue that stored network events. However, the event priority queue is no longer required
because the SimPy library provides that functionality automatically.

Additionally, the simulator design has been changed so that the nodes in the sensor network do not
have to model their own energy harvesting and discharging rates. This was removed as this is
beyond the scope of the project. Instead, the nodes get their on- and off-times from the energy
models that can be configured as needed. With this change, the EnergyModel class was added for
abstraction. The Event and Logger classes were also added to the design to abstract more details
away from the node and simulation modules.

Similar to the original design, the simulator still runs from the command line; however, there are no
command-line arguments to configure the system. In place of command-line arguments, the
simulator uses a configuration file to set up the system. The previous design also planned to rely
more on a socket connection between the simulator and backend to facilitate the flow of data to the
visualizer. While this still has been implemented, the primary method for feeding data to the
frontend is via a simulator-generated trace file that can be loaded by the frontend.

2.5.2 Backend Revisions

Our design for the backend has changed slightly since our initial design. The technologies and
general setups have worked well for our use cases. However, there have been some other changes
that have been made.

One main point that has changed is the priority of the socket connection to the simulator. Our client
decided this real-time connection was not a priority, as he could instead just upload a trace file
produced by the simulator within the frontend. Thus, our code is written in such a way that
adjustments to adding a socket would be straightforward, but we do not actually implement it.

A second larger design update is based on the oversimplification of data processing. The backend
module now contains a large segment of code that processes the events produced by the simulator
to produce a summary of what is actually occurring in the system in a new data format. This
processing was described, but not in as much detail originally, partially because we didn’t fully know
the formats going to or from the Frontend and Simulator.

Finally, the backend has had to add endpoints to provide the data structures behind the error graph
and error tree. These again have involved more logical consumption of the history of the simulation.

2.5.3 Frontend Revisions

The high-level design for the frontend application has changed slightly. We have broken up the
Presenter/Adapter into two logical components: Presenter and Adapter. This happened because we
need to process the response from the backend to make it compatible with the format required by
the libraries we are using.

Our detailed design had changed a few times throughout the development process due to the
changes in our clients’ requirements. Initially, the Visualizer was supposed to display all the
information on one main page. Now, we have added a separate page for managing all the
simulations, per our clients’ requests. Other changes to our detailed design were regarding the
libraries we were using. Initially, we wanted to use GoJS, which is proprietary, and our client
requested that we use only open-source libraries.

3 Implementation
3.1 Simulator
We have developed a simulator that can model a simulated sensor network. Using SimPy, we have
been able to define the behavior of each of the nodes as they cycle between off and on states and as
they communicate with other nodes. The simulator sets up a sensor network by defining a set of
nodes and linking neighbor nodes to allow for simulated communication between nodes. The SimPy
module allows us to use discrete-event simulation to jump ahead to future events that happen in the
lifecycle of the network. The components of the simulator are described in more detail in the
following sections.

3.1.1 Simulation

The Simulation class is implemented in simulation.py. It is the main section of the simulator that
drives the simulation with its run() function. The run() function calls the run() function for the
discrete-event simulation library, which starts the simulation. Before running the simulation, it is set
up with a reference to the discrete-event simulation environment, a Logger object for logging the
simulation results, and a list of nodes that describe the network.

3.1.2 Nodes

The Node class is defined in node.py and contains logic for driving the lifecycle of a node. Each node
has a set of properties for defining their behavior, namely off-, boot-, and on-times; a list of
neighboring nodes; and an energy model. The nodes also have an ID and a position that are used to
visualize each node. The nodes are instantiated in simulation.py with details derived from the
configuration file.

The lifecycle of a node is driven in the run() function within the class. It cycles between the off, boot,
and on states. These states are defined in the NodeState enumeration. In the run() function, the
node harvest() function is called to simulate the off period where a node is turned off while
harvesting energy. This runs for the duration of the off time. Next, the boot() function executes
when a node starts to turn on. In boot(), the node updates its local time based on the reading from
the persistent clock. Then, turn_on() is called to transition a node into the on state. After turning on,
a node will attempt to communicate with all of its neighbors. Finally, the consume() function is run
to represent the remaining on period until a node runs out of energy and returns to the off state.
This cycle repeats continuously until the end of the simulation.

3.1.3 Energy Models

Each node has an energy model which controls how long it will remain in each state (off, boot, and
on). The energy model also controls the variation in time for each state. To get the times for each of
these states, there are corresponding functions: get_next_off_time(), get_next_boot_time(), and
get_next_on_time(). To produce the local error that occurs when a node reads its persistent clock,
the get_pclock_off_time() is used by a node to estimate how long it was off. The node uses this to

update its local sense of time. This value will vary depending on the type of energy model. There are
multiple energy model types, including the constant energy model and the random energy model,
which are defined in the ConstantEnergyModel and RandomEnergyModel classes in
energy_model.py.

3.1.4 Configuration

The config.py file includes several shared definitions that are used throughout the project, including
timing values, logging configurations, and sensor network configurations. This file also includes the
format of the trace file previously described in Section 2.3.1.

3.1.5 Events

The events that may occur during a simulation are defined in the event.py file. Each event type has a
separate class with corresponding fields and a byte_conversion() function. There are four event
classes, one for each event type: ShareTimeEvent, ShareTimeConfirmationEvent,
ShareTimeFailureEvent, and NodeStateEvent. These event types are also enumerated in the
EventType class. The NodeStateEvent occurs every time a node transitions between states (i.e.
off-to-boot, boot-to-on, and on-to-off). It has fields to record the ID of the node, its updated time,
and its state.

The ShareTimeEvent occurs when nodes attempt to communicate with their neighbors. It has fields
to store the IDs of the sending and destination nodes, their local times, and the updated time. For
every ShareTimeEvent, there is a corresponding response that comes as a
ShareTimeConfirmationEvent or a ShareTimeFailureEvent. If the destination node is on, the
response is successful, meaning a ShareTimeConfirmationEvent occurs. Otherwise, a
ShareTimeFailureEvent occurs. Both of these response events have the same fields: the IDs of the
sending and destination nodes and the updated time. If communication is successful, the destination
node updates its local time to the updated time from the event field.

3.1.6 Logger

To record events that occur during a simulation, we developed the Logger class, which resides in
logger.py. There are four supported logging formats that the logger can handle: a simple,
easy-to-read format, a plain-text log of event fields, a data transfer over a socket connection, and a
byte-by-byte log of event fields to a trace file. Each logging format has a corresponding function
that handles it: print_event_simple(), print_event_fields, send_event(), and trace_event(). The
logging methods are configured in config.py. In addition, there are helper functions to set up
logging, handle the logging of configuration details, and end logging. See Appendix III: Other
Considerations - Plain-Text Logging Example for an insight into the logger’s plain-text output.

3.2 Backend
The backend server has been implemented using the express.js framework and MongoDB. Once the
frontend has received a trace file the frontend can upload that file for the backend to process and
store. With MongoDB, the frontend can store multiple trace files and can look at different
simulations at a time. The backend also has endpoints that provide meaningful data about the
simulation like displaying the mean of nodes or figuring out where the error originally came from.
Here are the multiple endpoints that the backend provides for the frontend to use.

Endpoint Call Type Parameters Description Output

/file POST File, name Uploads the trace file
to the backend for the
backend to process and
store into the database

The generated
simId, and the
name you
selected.

/getAllSims GET No parameters Serves all the
simulations that is
currently stored on the
database

An array of objects
showing simId,
name, processed
status

/getConfig GET simId Will serve configuration
data of the simulation.

An object showing
duration,
noOfNodes and an
array of Node
objects and their
properties.

/deleteSim GET simId Will delete the
simulation that the
user chooses

A boolean to see if
the simulation was
deleted

/getTimeObject GET simId, queryType,
realTime, simId

Queries the database
for the selected
realTime

Returns the
realtime and an
array of node
objects and their
time values

/meanAndMedErrors GET simId, realTime,
numPoints

Grabs the mean and
median of the group of
nodes at each realTime
up to the numPoints

Returns an array
of real time,
meanError,median
Error

/nodeErrors GET simId, realTime,
numPoints

Get the error for the
selected node at
relevant realtime points
of numPoints/2 above
and below

Returns an array
of realTime and
errors for the
nodeId

/errorTree GET simId, realTime,
nodeId,
numGraphNodes

Creates a tree of error
for the selected node at
a realTime and shows
the user where the
error could have
originated from
depending on
numGraphNodes

Returns the error
tree with having
the selected
nodeId as a root

/getSimStatus GET simId This endpoint will grab
the state of the
simulation and tell the
user whether it's
processed or not.

A boolean variable
showing the
status of the
simulation.

Table 3.1. API Endpoints

3.3 Frontend
The frontend application has been implemented using the ReactJS framework and open-source JS
libraries. The application consists of two main pages: Trace File Input Page (previously mentioned
“Simulation Management Page” in section 2.3.3), and Main Visualization Page (figure 3.1). These pages
are broken up into multiple components that encapsulate and manage their own information, which
makes the application modular and easily maintainable.
The Main Visualization page can only be accessed after the user has uploaded at least one
simulation. There is one class responsible for sending all HTTP requests to the backend application’s
API endpoints, and one class that processes all the responses from the backend and transforms them
to the format required by the libraries used. The application implements the subscriber-publisher
pattern to update the GUI upon receiving a response from the backend. Each component is
subscribed to different event types, and once the event is fired, a callback function is used to update
the UI.

3.3.1 Resources

For displaying the network graph and error propagation tree graph, our application uses an
open-source library called React-Digraph [12]. This library provides a convenient way for us to draw
directed graphs using our custom styles. It requires that the nodes’ coordinates are provided within
the Node object, so the Buchheim algorithm for assigning coordinates to nodes in rooted trees in
linear time was implemented [13]. This algorithm assigns the coordinates in such a way that most
users will find the tree appealing. The Recharts library [14] is used for graphing the network error
statistics, and the RC-Slider library is used for the slider control panel [15]. Utilized libraries are
labeled in Figure 3.1 below.

Figure 3.1. Main visualization page

4 Testing
4.1 Unit Testing

4.1.1 Simulator Testing

For our test plan, we decided to individually test the simulation and node modules to ensure each
unit works on its own. We also executed unit tests for the socket connection logic. The following
shows a list of tests for each unit of the simulator:

● Simulation
○ Setup of a simulated sensor network with different numbers of sensors

● Verify that individual nodes can be created for a variable number of sensors
● Verify the duration of the simulation matches the duration given in the input

○ Processing of events and calculations of subsequent events
● Ensure that the event processing occurs at the calculated time

○ Data outputting to ensure the format is correct
● Ensure the output file is in the same format that should have been written

● Nodes
○ Sending an event message

● Verify the data at the receiving node matches the data at the sending node
○ Transitioning between stages

● Verify that the node switches to the correct state when power is low
● Sockets

○ Establishing a connection
● Check to make sure no error occurs when the connection is made

○ Sending data over a connection
● Verify that data sent matches data received

○ Serializing and de-serializing event data
● Verify the event data matches the event that has occurred

Because we developed the backend (which receives data through the socket connection)
concurrently, we used mocking to simulate the reception of data so the simulator can be tested
without a finalized backend.

4.1.2 Backend Testing

We have two main segments of the backend to test, first the consumption of trace files and the
endpoints themselves. To test the consumption of trace files the simulator was equipped with the
ability to show a “plain text” version of the simulation. It describes in words. “Node 2 boots at time
1300” or “Node 3 failed communication with Node 7 at time 1900”. This way many trace files have
been able to be used as unit tests. Our collection of system statuses can be tested by cross checking
to the plain text version. Although this is not an automated unit test, it was used to ensure the
consumption of the binary trace files was completely working. The endpoints had a more
straightforward approach to test. Postman was utilized to mock calls that the frontend may make,
then the output could be checked for formatting and content according to what we could manually

see within the database. This was also our methodology of providing mock data to the frontend to
begin to use, meaning we can copy the exact output and allow them to use it, before actually making
the calls.

4.1.3 Frontend Testing

Many visualizer components have been tested in isolation from the other parts of the system. The
underlying classes to all components, the RestAPI requests/responses to the backend, and the utility
components have been unit tested with the help of the Jest testing framework. To test backend
connectivity without the backend working yet, the frontend team developed their own primitive
version of the backend application that provided identical endpoints to those that the backend
application was developing. This application was then used by the frontend team to make sure that
all the RestAPI requests worked in integration with the backend application. This approach made the
actual integration almost conflict-free. The GUI testing was also performed by the frontend team.
For more information on the GUI testing, see the next section.

4.2 Interface Testing
The following list shows the interfaces that needed to be tested:

● Simulator to visualizer
● Backend to Frontend

The initial testing of these interfaces was done via mocking on each segment. From there, the actual
interfaces were tested via several common use cases and some edges cases (large files or uncommon
requests). It was important to test each interface separately before advancing to further full system
integration testing.

The Graphical User Interface (GUI) is the main point of contact between the user and our system.
We have done extensive automated GUI testing using Selenium. We created a test suite that tests all
main graphical components that the user will be using. Attached is an example of one of the tests in
our testsuite, as well as the successful execution of the testsuite.

Figure 4.1. Visualizer GUI test suite

Extensive manual testing of the GUI was also performed by the frontend development team as well
as other developers. Although the complexity of the GUI interactions will not allow us to have a
complete testsuite, we are sure that the GUI meets the client’s requirements.

4.3 Integration Testing
Integration testing was an important element of this three-part system. This testing ensured that all
three modules are working together to fulfil the use cases. The system must complete them up to
our standards before we bring similar use cases to our client. The following use cases were tested
across the system:

● Importing a trace file to the frontend and visualizing the simulation it describes
○ This confirms the input functionality of the frontend.

● Viewing a graph of a node’s local sense of time over the course of the simulation
○ This shows the simulator, backend, and frontend can correctly display the time data

to the user for debugging.
● Viewing a graph of the error between the node’s local sense of time against the true time

○ This confirms the simulator, backend, and frontend can manage the error
calculations.

● Viewing the sources of error for a node’s local sense of time
○ This establishes that the system can reflect which nodes contribute to error.

● Creating a sensor network and running a simulation to view the deviation of a node’s local
sense of time against the true time.

○ This verifies the simulator is properly built, the backend is functioning, the frontend
is displaying correctly, and the connections are working.

4.4 Acceptance Testing
We involved our client in the development/testing process for their acceptance. We conducted
incremental acceptance testing after each feature had been implemented. It was important that we
did not wait until the end of the project to receive acceptance; thus, we met with our client biweekly,
or sometimes weekly, to get feedback on our design and implementation. These demos were an
important method of receiving acceptance, so we could present our ideas and explain them instead
of having our client blindly try to navigate the application.

4.5 Results
As a result of the testing stage of our software development lifecycle, we have a system with minimal
bugs that satisfies all of the system requirements, and the client agrees that the work on the system
is complete. The output of this stage includes testing artifacts (e.g. test results).

4.5.1 Simulator Tests

The simulator was tested on a variety of sensor network configurations, ranging from simple 3-node
networks to complex 15-node networks. It was also tested using simulations of varying durations,
running from 10 minutes to 24 hours with a time step of 1 millisecond. This test range allowed us to
verify that our simulator could handle different scenarios, and it allowed us to check performance
against different configurations. The following tables shows the results from these tests:

Duration (simulated time) 10 minutes 2 hours 24 hours

Actual run time 1.82 sec 21.26 sec 4 min, 19.23 sec

Seconds of run time per simulated
second

0.00303 0.00295 0.00300

Seconds of run time per simulated
second per node

0.00101 0.00098 0.00100

Table 4.1. 3-Node Simulation Performance

Duration (simulated time) 10 minutes 2 hours 24 hours

Actual run time 5.86 sec 1 min, 9.94 sec 14 min, 9.05 sec

Seconds of run time per simulated
second

0.00977 0.00971 0.00983

Seconds of run time per simulated
second per node

0.00122 0.00121 0.00123

Table 4.2. 8-Node Simulation Performance

Duration (simulated time) 10 minutes 2 hours 24 hours

Actual run time 11.03 sec 2 min, 11.65 sec 26 min, 50.46 sec

Seconds of run time per simulated
second

0.01838 0.01828 0.01864

Seconds of run time per simulated
second per node

0.00123 0.00122 0.00124

Table 4.3. 15-Node Simulation Performance

These results show that the run time for a simulation is roughly proportional to the duration of the
simulation and the number nodes in the simulation. More specifically, the simulation run time is
approximately 0.0010-0.0012 seconds for each second of simulated time for each node, meaning the
run time can be estimated by multiplying this value (about 0.0011) by the number of nodes and the
simulated time. Using the 8-node, 2-hour simulation as an example, the simulated time would be
estimated to be about 0.0011 sec/sim-sec per node x 8 nodes x (2 x 60 x 60 sim-sec) to get an
approximation of 63.36 seconds, which is very close to the observed run time of 69.94 seconds.

While setting up the communication interface between the simulator and the backend, we created a
mock_backend.py file that imitated the functionality of the backend to test the connection. First,
the mock backend established the connection with the simulator, and then it received the data that
the simulator was sending. It printed out this data to confirm that the received format matched the
data that the simulator was sending.

4.5.2 Backend Tests

The backend has been tested successfully. The consumption of trace files is working successfully, it
exactly matches the “plain text” output and serves that consumable data in such a way that the
frontend can display it. Additionally, each endpoint, including those that generate based on an
endpoint call work successfully. The integration from the simulator and to the frontend has been
successful because of these testing successes.

4.5.3 Frontend Tests

The frontend testing has been completed with both unit tests and manual feature tests after each
new feature had been implemented. Unit tests have been created using Jest, and Selenium is being
used to test the GUI of the frontend. The system has minimal bugs related to the requirements of
the final product. Manual testing was also done by the implementer of the features and by the other
frontend developer who did not work on the feature. We have tested the frontend and backend
applications together by uploading trace files of various sizes. The smallest file was for a three node
ten minute simulation and the largest was a fifteen node 24 hour simulation.

4.5.4 Integration Tests

We conducted integration testing in two stages. First, we performed smoke testing to see if there
were any severe issues with the system integration. We have managed to get all three systems to
communicate with one another. We then manually tested each integration point discussed in section
4.3 above. We performed manual integration testing before committing the code to the remote
repository. After the last commit, we performed final integration testing with the entire team
present. As a result, we have a fully functional system that is ready for acceptance testing.

5 Closing Material
5.1 Conclusion
The project is in a working and releasable state and is being delivered to the client. It has been tested
up to the initial baseline specifications and beyond. We have iterated over the design throughout our
development to settle on the final design detailed above. Our team is satisfied with our progress and
excited to see how the project will continue to be used in this research space.

5.2 References
[1] R. Fielding and J. Reschke. "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content",
RFC 7231, June 2014.

[2] J. Postel. "Transmission Control Protocol", RFC 793, September 1981.

[3] Systems and software engineering - Vocabulary, IEEE Standard 24765, 2017. [Online]. Available:
https://www.iso.org/standard/71952.html

[4] V. Deep, V. Narayanan, M. Wymore, H. Duwe and D. Qiao: ‘HARC: A Heterogeneous Array of
Redundant Persistent Clocks for Batteryless, Intermittently-Powered Systems’. Proc. The 41st IEEE
Real-Time Systems Symposium 2020 [Accepted].

[5] “SimPy - Discrete event simulation for Python,” Read the Docs. Accessed: 11/15/2020
[Online]. Available: https://simpy.readthedocs.io /en/latest/

[6] “Express - API Reference”, Vers 4.x. 2017. Accessed: 11/14/2020 [Online]. Available: https:
//expressjs.com/en/api.html

[7] “The MongoDB Manual”, Vers 4.4. 2020. Accessed: 11/12/2020 [Online]. Available: https://
docs.mongodb.com/manual/

[8] “The MongoDB Node Driver”, 2020. Accessed: 11/12/2020 [Online]. Available: https://docs.
mongodb.com/drivers/node/

[9] “React - A JavaScript Library for Building User Interfaces”, Vers 17.0.2, Facebook Open Source,
Facebook, 2021, Accessed: 04/25/2021 [Online]. Available: https://reactjs.org/

[10] “The Selenium Browser Automation Project”, Selenium HQ Browser Automation, 2021,
Accessed: 04/25/2021 [Online]. Available: https://www.selenium.dev/documentation/en/

[11] “Jest - Delightful JavaScript Testing”, Facebook Open Source, Facebook, 2021, Accessed:
04/25/2021 [Online]. Available: https://jestjs.io/

https://www.iso.org/standard/71952.html
https://simpy.readthedocs.io/en/latest/
https://expressjs.com/en/api.html
https://expressjs.com/en/api.html
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/drivers/node/
https://docs.mongodb.com/drivers/node/
https://reactjs.org/
https://www.selenium.dev/documentation/en/
https://jestjs.io/

[12] “A Library for Creating Directed Graph Editors”, Uber Open Source, Uber, 2021, Accessed:
04/25/2021 [Online]. Available: https://github.com/uber/react-digraph

[13] C. Buchheim, M. Junger and S. Leipert “Improving Walker’s Algorithm to Run in Linear Time”,
Universitat zu Koln, Koln, Germany. [Online]. Available: http://dirk.jivas.de/papers/buchheim02im
proving.pdf

[14] “Reacharts - A Composable Charting Library Built on React Components”, Recharts Group,
Vers. 2.0.9. Accessed: 04/25/2021 [Online]. Available: https://recharts.org/en-US/

[15] “React Slider”, Schrodinger, Inc., 2021, Accessed: 04/25/2021 [Online]. Available: https:/
/github.com/schrodinger/rc-slider

https://github.com/uber/react-digraph
http://dirk.jivas.de/papers/buchheim02improving.pdf
http://dirk.jivas.de/papers/buchheim02improving.pdf
https://recharts.org/en-US/
https://github.com/schrodinger/rc-slider
https://github.com/schrodinger/rc-slider

5.3 Appendix
The following supplementary information may be used to better understand the project.

5.3.1 Appendix I: Operation Manual

Execute these instructions sequentially to set up and operate the simulator and visualizer, starting
with project setup, then simulator, followed by backend, and finally frontend. The simulator will
generate a trace file that will be needed when running the frontend.

Project Setup
Prerequisites:

● Git is installed

Get the project files:
● Navigate to a location to store the project
● Clone the git repository with “git clone https://git.ece.iastate.edu/duwe/sst-sim.git”

Simulator
Prerequisites:

● Python is installed
● The sst-sim repository exists on the local machine

Configuration:
In config.py, configure the following:

● Specify the logging configuration
● Specify the time resolution
● Specify the duration
● Specify the number of nodes in the simulation
● Define all nodes in the network with the following characteristics

○ Node ID
○ (x,y)-position for placement in the visualizer
○ Off-, boot-, and on-times
○ List of neighbor nodes
○ Energy model

● Populate the network list with all of the nodes
● Specify the reply delay

Execution:
● Run the simulation from the simulator folder with “python simulation.py”
● If the logging configuration outputs a trace file, it will be located in the trace_files

subdirectory. It will be needed when running the frontend.

Backend
Installation:

● Install the most recent version of MongoDB Community Edition
(https://www.mongodb.com/try/download/community). Keep note of the installation
directory, you will need it later.

● Additionally, ensure Node.js is installed on your system (https://nodejs.org/en/). Then run
npm install inside of the /backend folder, several packages will likely be installed.

Execution:
● Copy the "start-backend-TEMPLATE.sh" included in the "/backend" folder and create a copy

of it still within the "/backend" directory. Rename the copy to "start-backend.sh" as this is
ignored by git so we only share the template. Edit "start-backend.sh" to make the two paths
reflect your system, explanations are in the comments of that script.

● Run ./start-backend.sh in a capable command line. If on Windows this may require Cygwin,
Git Bash, or similar.

○ This script starts both the mongo server process and the ExpressJS project.
○ The Mongo server output is put into /backend/database.log. The ExpressJS Server

output will continue to be shown in the command line.
○ Ctrl-C will terminate the Mongo server and the Express project

Frontend
Installation:

● Prerequisites:
○ node.js and npm (Node.js)

Note: npm is installed with node.js.
● To install the program:

1. Download the source code and navigate to the “frontend/visualizer” folder in the
command line terminal.

2. Run “npm install”.

Compilation:
● To compile the program, run “npm run build”.

Execution:
● Prerequisites: serve (“npm install -g serve” or “npm install serve”); compiled frontend

application; running backend application; at least one .trace file generated by the simulator.
● To run the visualizer, execute “serve -s build”.

Using the program:
● Navigate to http://localhost:5000/ in a web browser of your choice, and you will see the

simulation management page (figure 5.1).

https://www.mongodb.com/try/download/community
https://nodejs.org/en/
https://nodejs.org/en/
http://localhost:5000/

Figure 5.1. Simulation management page
1. Import a simulation.

a. Enter simulation name.
b. Select a trace file containing the simulation.
c. Click “submit” to move to the main page for the inputted simulation

The page will update to show that the simulation is being processed (figure 5.2).

Figure 5.2. Updated simulation table

2. Run a preprocessed simulation.
Once a simulation has been processed, the page will update, and the “Launch” button will
enable. Click the “Launch” button next to the simulation you want to run. You will be
forwarded to the main page (Figure 5.3). This page displays the simulation at time 0, and the
mean and median errors for all the nodes at the beginning of the simulation.

Figure 5.3. Main visualization page
3. Delete a simulation.

To delete a simulation, click the “X” button next to the simulation you want to delete. The
simulation will be deleted from the database, and the table will update to reflect that.

Figure 5.4. Simulation table before deletion Figure 5.5. Simulation table after deletion

4. See the next “interesting” event.
To advance to the next “interesting” event, click on the “Next” button in the Slider Panel
(figure 5.3).

5. See the previous “interesting” event.
To advance to the previous “interesting” event, click on the “Back” button in the Slider Panel
(figure 5.3).

6. Advance to a desired point in the simulation.
To advance to a desired point in the simulation, do one of the following:

● Move the slider to the desired point of simulation time.
● Enter the desired time in the time input field (time format: hh:mm:ss:mmm).

7. See detailed node information.
To see more detailed information about a node, click on the node. The panel on the left will
update with the detailed information.

Figure 5.6. Node details panel

8. See error propagation through time for a node.
To see error propagation through time for a node, click on the node. The graph on the right
will update with the history of communications for the node going back from the current
real time.

Figure 5.7. Error propagation tree
9. See node’s error over time.

To see node’s error over time, click on the node. The graph at the bottom of the page will
update to show the node’s error over time. Moving throughout the simulation will move the
error graph accordingly.

Figure 5.8. Error over time graph

Stopping the program:
● To stop the program, press Ctrl+C in the terminal window, in which you ran “serve -s build”.

5.3.2 Appendix II: Alternative Designs

The frontend went through two alternative designs. Both of these designs involved a different
graphing library used to display the nodes in the network graph and the error tree graph on the
main page of the visualizer. We used the GoJS library for some time, but it was a proprietary library
and our client then asked us to use an open source library. We shifted to using ReactFlow for a time,
but eventually decided to switch again because the edges and arrows connecting nodes did not have
the desired functionality we needed them to have. We settled on using React-Digraph to display
these graphs on the visualizer as it’s open source and has the features we need.
Another alternative for the frontend design was to code the frontend using AngularJS and not
ReactJS. The deciding factor was our frontend developers having some experience with ReactJS,
while having no experience with AngularJS.

5.3.3 Appendix III: Other Considerations

Plain-Text Logging Example
The following text is a sample excerpt from the output of a 15-node simulation when plain-text
logging is enabled. It shows several interesting events during the simulation, including nodes
booting, turning on, turning off and attempting communication.

...
00587761: N2 booting (local time is 587778)
00587771: N6 booting (local time is 587761)
00587781: N2 on and consuming energy (local time is 587798)
00587781: Node 2 with local time 587798 sending to Node 1 with local time 586511, attempting to
update 1's time to 587155
00587781: Node 2 failed to receive time from Node 1
00587781: Node 2 with local time 587798 sending to Node 4 with local time 586334, attempting to
update 4's time to 587066
00587781: Node 2 failed to receive time from Node 4
00587791: N6 on and consuming energy (local time is 587781)
00587791: Node 6 with local time 587781 sending to Node 5 with local time 587786, attempting to
update 5's time to 587783
00587791: Node 5 received time from Node 6, updating its local time to 587783
00587792: Node 5 with local time 587784 sending to Node 6 with local time 587782, attempting to
update 6's time to 587784
00587792: Node 6 received time from Node 5, updating its local time to 587784
...

Lifecycle of a Node
The following image shows the states and transitions of a node in the sensor network. The blue
arrows represent information being sent from the simulator to the visualizer.

Figure 5.8. Node lifecycle

