
Project ID: sdmay21-15
Members: Adam Ford, Allan Juarez, Maksym Nakonechnyy, 

Anthony Rosenhamer, Quentin Urbanowicz, and Riley Thoma

Electrical and Computer Engineering
Senior Design Presentations

Spring 2021

Debugger and Visualizer for a Shared Sense 
of Time on Batteryless Sensor Networks

Design Approach
Simulator
● Produces event 

data for simulated 
sensor networks

● Outputs event 
data to a trace file

Backend 
● Creates a bridge 

from event data 
to consumable 
data for the 
frontend

● Handles data 
storage

Frontend
● Visualizes data provided by the backend
● Handles trace file input

System Interaction
● The simulator generates event data that is processed by the backend 

and sent to the frontend to be visualized for debugging the shared 
sense of time across nodes in the network

Special thanks to our client/advisor Dr. Henry Duwe and his graduate research student Vishal Deep

Introduction
Problem Statement: Batteryless devices utilizing ambient power sources 
have created new possibilities in distributed sensing, but their lack of a 
consistent power source hinders accurate timekeeping. To address this, a 
research team is studying methods to maintain a shared sense of time 
across a network of batteryless sensors.

Solution: Our team has been tasked with creating a simulation and 
visualization tool for analyzing and debugging this shared sense of time.

Final Product

Design Requirements
Functional Requirements
● System stores previous simulations
● Simulator produces on-time/off-time 

data from an energy model
● Visualizer shows up to 15 sensor nodes
● Visualizer displays the propagation of 

error through the network

Non-functional requirements
● Modular for maintainability
● Maintain sub-second accuracy
● Visualizer implemented as a web app

Engineering Constraints
● Remote work due to the pandemic
● Open-source libraries

Operating Environment
● PC in a controlled research lab

Resources
● 6-person team, no expenditures

Engineering Standards
● RFC 793: TCP & RFC 7231: HTTP

○ Support frontend-backend 
communication

Technical Details
Simulator
● Python application
● SimPy for discrete-event simulation

Backend
● Developed with express.js framework
● Communicates with frontend with API 

endpoints
● Stores and queries using MongoDB

Frontend
● Developed in ReactJS using 

React-Digraph, Recharts, and 
RC-Slider

● Implements the publisher-subscriber 
pattern to update the UI after receiving 
communication from the backend

Intended Users and Uses
Dr. Duwe and Vishal Deep, his graduate 
research assistant, will use the simulator 
and visualizer to research and develop 
techniques for batteryless sensor networks 
to maintain a shared sense of time.

Testing
Testing Tools: Postman, Jest, Selenium

Unit Testing: All smallest modules of all 
applications were tested individually, 
generally by mocking. For example, the 
backend system used Postman to mock 
frontend functionality, and the frontend 
team created their own app to mock 
backend functionality.

Integration Testing: First, each connection 
(simulator to backend, backend to 
frontend) was tested separately. Then, the 
entire system was integrated and tested. 

Advisor: Dr. Henry Duwe
Clients: Dr. Henry Duwe and Vishal Deep

Block Diagram

Error Propagation
Tree Graph

Local Error Through 
Time Graph

Network 
Visualization

Detailed 
Node Info

Real Time 
Clock Controls

High-Level System Diagram


