
Senior Design Team 15:
Debugger and Visualizer 

for a Shared Sense of 
Time on Batteryless 

Sensor Networks
Adam Ford Anthony Rosenhamer
Allan Juarez Quentin Urbanowicz
Riley Thoma Maksym Nakonechnyy
Advisor: Dr. Henry Duwe 
Clients: Dr. Henry Duwe & Vishal Deep



Project Vision
Need
● Networks of batteryless sensors

Goal
● Create software tools to simulate, 

visualize, and debug shared 
timekeeping in batteryless sensor 
networks

Lifecycle of a Node



Conceptual Diagram
● Simulator

○ Models a sensor network
● Visualizer

○ Displays details about the 
sensor network

System Overview



Functional Requirements
Simulator
● Shall generate the data in the same format as real data.

● Shall produce on-time/off-time data from a user-selected energy 
model.

Visualizer 
● Shall visualize important time events selected by the user.
● Shall visualize the statistics of system communication.

System-Wide
● Shall store trace file data.



Non-Functional Requirements
Simulator

● The simulator shall run natively in a Linux environment.
Visualizer

● The visualizer shall be accessible from any OS
● The visualizer shall be implemented as a web application.

System-wide
● The system shall be modular to allow for maintainability.



System Design - Simulator

● Technologies
○ Python
○ SimPy

Simulator Class Diagram



System Design - Backend

● Main Modules
○ Request Routing
○ Logic for Requests
○ Database queries

● Technologies
○ ExpressJS
○ MongoDB
○ Postman

● Design Updates
○ Socket Communication was 

dropped
○ Additional data 

manipulation was added for 
Error Trees and Graphs

○ Database structure for 
multiple simulations



System Design - Frontend
● Consists of two logical components

○ Presenter/Adapter
○ Server Communicator

● Independent
● Communicate via callbacks and 

EventBus
● Communication with the backend via HTTP
● Technologies

○ HTML & CSS
○ React JavaScript
○ Jest & Selenium Frontend Block Diagram



Implementation - Simulator

● config.py: simulation is configured
○ Simulation duration and time step
○ Network structure
○ Node characteristics

● simulation.py: simulation is built and run
○ Configuration is applied
○ Node objects are defined

● node.py: nodes cycle between states
○ Gets times from energy model
○ Events are generated and logged

Node Class run() Function



Implementation - Backend

● Trace File Consumption/Upload
○ Input: 0x124F80030101010102020... 
○ Output:

● General Endpoints
○ Handle the multiple simulations
○ Query then Serve the data 

persisted in MongoDB

● Tree Creation
○ Algorithm that produces the error 

tree based on previous 
communications

○ Decided on a nested “recursive” 
format



Implementation - Frontend

● Two main pages 
developed in ReactJS 
with HTML & CSS

● Publisher - subscriber 
pattern used for GUI 
updates

● Buchheim algorithm for 
drawing rooted trees

Libraries Utilized



Demo

https://docs.google.com/file/d/1J21K-CUouoMf22BXK0rvTJOFl4vPloi8/preview


Testing - Simulator

● Component unit testing
○ Mock backend used to test backend interface

● Simulation performance testing:

Duration (simulated time) 10 minutes 2 hours 24 hours

Actual run time 5.86 sec 1 min, 9.94 sec 14 min, 9.05 sec

Seconds of run time 
per simulated second 0.00977 0.00971 0.00983

Seconds of run time 
per simulated second per node 0.00122 0.00121 0.00123

8-Node Simulation Performance



Testing - Backend

● Used Postman to make HTTP calls 
on our endpoints to see what 
results we would get 

● Compared the event text file 
(provided by the simulator) to 
what we have stored in the 
database. 



Testing - Frontend

● Custom backend

● Manual testing

● Jest unit test 
suite

● Selenium GUI 
test suite



Thank you!
Questions?


